MATH 8610 (SPRING 2019) HOMEWORK 1

Assigned 01/15/18, due 01/29/18 (Tuesday) 5pm.
Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.

1. [Q1] (10 pts) (a) Find the absolute and relative condition numbers of $f(x)=e^{-2 x}$ and $f(x)=\ln ^{3} x$. For what values of x are these functions sensitive to perturbations? (b) Let $x_{1}, x_{2} \in \mathbb{R}^{+}$, and $f\left(x_{1}, x_{2}\right)=x_{1}^{x_{2}}$. Find the relative condition number of $f(x)$, and for what range of values of x_{1} and x_{2} is the problem ill-conditioned.
2. [Q2] (10 pts) Consider the recurrence $x_{k+1}=111-\frac{1130-\frac{3000}{x_{k-1}}}{x_{k}}$, whose general solution is $x_{k}=\frac{100^{k+1} a+6^{k+1} b+5^{k+1} c}{100^{k} a+6^{k} b+5^{k} c}$, where a, b and c depend on the initial values. Given $x_{0}=\frac{11}{2}$ and $x_{1}=\frac{61}{11}$, we have $a=0, b=c=1$.
(a) Show that this gives a monotonically increasing sequence to 6 .
(b) Implement this recurrence on MATLAB, plot $\left\{x_{k}\right\}$, compare with the exact solution. What is the condition number of the limit of this particular sequence as a function of x_{0} and x_{1} ?
3. [Q3] (10 pts) Let $p_{24}(x)=(x-1)(x-2) \cdots(x-24)=a_{0}+a_{1} x+\cdots+a_{23} x^{23}+a_{24} x^{24}$, where $a_{16} \approx 2.9089 \times 10^{14}, a_{17} \approx-1.2191 \times 10^{13}, a_{18} \approx 4.1491 \times 10^{11}, a_{19} \approx$ -1.1277×10^{10}, and $a_{20} \approx 2.3881 \times 10^{8}$. Evaluate the relative condition number of the k-th root $x_{k}=k$ subject to the perturbation of a_{k} for $k=16$ to 20 and find the root that is most sensitive to the perturbation of the corresponding coefficient. Use the attached MATLAB data file wilk24mc.mat containing the coefficients $a_{24}, a_{23}, \ldots, a_{1}$, and use MATLAB's roots to find the roots. Compare with the true roots and comment on what you see.
4. [Q4] (10 pts) Let $x_{0}, x_{1}, \ldots, x_{n}$ be $n+1$ equidistant points on $[-1,1]$, where $x_{0}=$ -1 and $x_{n}=1$. Use MATLAB's vander to generate Vandermonde matrices A for $n=9,19,29,39$. Let $x=\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]^{T}$ and $b=A x$. Pretend that we do not know x and use numerical algorithms to solve for x. Let \hat{x} be the computed solution.
Compute the relative forward errors $\frac{\|\hat{x}-x\|}{\|x\|}$ and the smallest relative backward errors $\frac{\|b-A \hat{x}\|_{2}}{\|A\|_{2}\|\hat{x}\|_{2}}=\min \left\{\frac{\|\Delta A\|_{2}}{\|A\|_{2}}:(A+\Delta A) \hat{x}=b\right\}$ for (a) GEPP (MATLAB's backslash), (b) QR factorization of A, (c) Cramer's rule, (d) A^{-1} multiplied with b, and (e) GE without pivoting. Comment on the forward/backward stability of these methods.
5. [Q5] (20 pts) Though pivoting is needed for factorizing general matrices, it is not needed for symmetric positive definite and diagonally dominant matrices.
(a) For a symmetric positive definite A, with the one-step Cholesky factorization $A=\left[\begin{array}{cc}a_{11} & w^{T} \\ w & K\end{array}\right]=\left[\begin{array}{cc}\sqrt{a_{11}} & 0 \\ \frac{w}{\sqrt{a_{11}}} & I\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & K-\frac{w w^{T}}{a_{11}}\end{array}\right]\left[\begin{array}{cc}\sqrt{a_{11}} & \frac{w^{T}}{\sqrt{a_{11}}} \\ 0 & I\end{array}\right]=R_{1}^{T} A_{1} R_{1}$, show that the submatrix $K-\frac{w w^{T}}{a_{11}}$ is symmetric positive definite. Consequently, the factorization can be completed without break-down. Then, show that $\|R\|_{2}=\|A\|_{2}^{\frac{1}{2}}$, which means the element in R are uniformly bounded by that of $\|A\|$. Explain why this observation leads to the backward stability of Cholesky factorization.
(b) Suppose that $A=\left[\begin{array}{ll}\alpha & w^{T} \\ v & C\end{array}\right]$ is column diagonally dominant, with one-step LU factorization $A=\left[\begin{array}{cc}1 & 0 \\ \frac{v}{\alpha} & I\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & C-\frac{1}{\alpha} v w^{T}\end{array}\right]\left[\begin{array}{cc}\alpha & w^{T} \\ 0 & I\end{array}\right]$. Show that the submatirx $C-\frac{1}{\alpha} v w^{T}$ is also column diagonally dominant, and no pivoting is needed.
(c) Show that the worst-case growth factor $\rho_{n}=2^{n-1}$ for GEPP. Compared to $\rho_{n} \leq C n^{\frac{1}{2}+\frac{1}{4} \ln n}$ with complete pivoting and $\rho_{n} \leq 1.5 n^{\frac{3}{4} \ln n}$ with rook pivoting, this is much larger. However, we construct matrices with random elements, each are independent samples from the normal distribution of mean 0 and standard deviation $\frac{1}{\sqrt{n}}(\mathrm{~A}=\operatorname{randn}(\mathrm{n}, \mathrm{n}) / \operatorname{sqrt}(\mathrm{n}))$. Let $n=32,64, \ldots, 2048$, and for each n, repeat the experiment 5000 times. Note that $\rho_{n}=\frac{\max _{i j}\left|u_{i j}\right|}{\max _{i j}\left|a_{i j}\right|}$ for LUPP. Find the percent of experiments when $\rho_{n}>\sqrt{n}$. Comment on the chance of having a large ρ_{n}.
